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a b s t r a c t

Breast cancer is the leading cause of death among women. This fact justifies researches to reach

early diagnosis, improving patients’ life expectancy. Moreover, there are other pathologies, such

as cysts and benign neoplasms that deserve investigation. In the last ten years, the infrared

thermography has shown to be a promising technique to early diagnosis of breast pathologies.

Works on this subject presented results that justify the thermography as a complementary exam

to detect breast diseases. Several papers on the use of infrared imaging for breast screening can

be found in the current medical literature. This survey explores and analyses these works in the

light of their applications in computer vision. Consequently, the comments are organized

according to the main steps of pattern recognition systems. These include: image acquisition

protocols, exams storage, segmentation methods, feature extraction, classification or diagnostic

and computer modelling. Main contributions of discussed papers are summarized in tables to

provide a structured vision of the aspects involved in breast thermography.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Breast cancer appears usually in the ducts, tubes that
carry milk to the nipple, and lobules, glands that produce
milk (Fig. 1). It occurs in both men and women, although
male breast cancer is a rare disease. Some works have
reported that the growth rate of a tumour is proportional
to its temperature [1]. Screening looks for cancer before
a person presents any symptom. It can help to find
cancer at an early stage. When cancer is found earlier, the
healing chances are greater. If a screening test result is
abnormal, more diagnostic tests are necessary to define
whether the finding is a cancer [2]. Each type of test
presents specific characteristics. The combination of
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different explorations is fundamental, because most
of them are complementary. For instance, information
obtained from the breast ultrasound, dedicated breast CT,
tomosynthesis and mammography are morphological.
Thermography is a biological or a functional exam [1].
The infrared image presents physiological information
of normal and abnormal functioning of the vascular
system, sensorial and sympathetic nervous system, and
inflammatory processes [3,4]. The concept of combined
diagnostic, presented in the modern diagnostic centre,
allows the achievement of a high degree of specificity and
sensibility on such diagnosis [5].

Infrared images do not use ionizing radiation, venous
access, or others invasive procedures. Besides these facts,
it is painless and has no contact with the skin surface,
causing no nuisance to the patient. It is low cost when
compared to the traditional exams, such as mammogra-
phy, ultrasound and magnetic resonance. It also has
advantages for the diagnosis in young women, because
dense tissues present difficulty for early visualization
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Fig. 1. Anatomy of the breast.
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of problems by X-ray. For instance, micro calcifications
and masses are usually well visible only in mammograms
of women in non reproductive ages [6]. Moreover, ther-
mography is very useful for detecting non palpable
breast cancer; that is, those that cannot be detected by
other exams. This also applies to non palpable but
histological advanced or those with fast and aggressive
growth [3].

Signal and image processing techniques have been
successfully applied on medical data as a tool for screen-
ing and improving diagnosis. However, it is not easy to
find papers containing a critical analysis of works on
thermal images of breasts. Keyserlingk et al. [7] consider
the use of infrared (IR) imaging to aid on the diagnosis of
clinical exams from the latest 1960s. During the 1970s
they showed that the combination between thermogra-
phy and mammography increased the sensitivity of can-
cer detection in approximately 10% [7]. In the last two
decades, the breast thermography has achieved an aver-
age sensitivity and specificity around 90% for breast
tumour detection [8]. An abnormal thermogram may
indicate significant biological risk for the existence or
for the development of breast tumours [9]. Studies
showed that a thermogram could identify precancerous
or cancerous disease earlier than others exams [1,3].
Some authors state that the thermography may have the
potential to detect breast cancer up to 10 years earlier
than the traditionally golden method: the mammography
[8,10,11]. Moreover, every time the breast is exposed to
X-ray, the cancer risk increase by 2%, and the premeno-
pausal breast is highly sensitive to radiation [12].

This paper presents a review on recent image proces-
sing works related to the thermography for breast dis-
eases detection and diagnosis. A special attention is given
to the early detection of cancer, since it is the most
serious breast pathology and the most frequent neoplasm
in women [5]. Evaluating the use of thermography in a
cancer detection program is not the aim of this review.
This survey is organized as follow. An initial section about
thermography (Section 2) is followed by sections on
works and techniques used in the main stages of a
computer aided detection or diagnosis (CAD) systems.
The first step in CAD systems is the acquisition and
storage of images. Several acquisition protocols of breast
thermal images and ways for storing these images are
described in the literature, but there is no standard for
this (Section 3). The thermograms are usually acquired in
a larger area, which makes necessary the use of segmen-
tation techniques for region of interest (ROI) extraction
(Section 4). Other important steps in a CAD are the choice
of features extracted from the ROIs (Section 5), and their
classifications (Section 6). There are also two additional
sections, one about the interpretation of thermal images
in the diagnosis of pathologies (Section 7) and other about
computer simulation or modelling (Section 8). Finally,
the conclusions of this survey work are summarized in
Section 9. Whenever possible, the revised papers are
presented in chronological order to allow a better com-
prehension of the evolution of techniques used in each
section.

2. Thermal breast imaging

Although there are thermal images obtained by con-
tact, the type considered here are those named thermo-
grams. The human body emits infrared electromagnetic
radiation. The thermographic camera is sensitive to this
kind of radiation. The images acquired by this camera are
formally denominated telethermography or telethermo-
metry [13]. Its sensors capture the natural thermal radia-
tion generated by an object at a temperature above
absolute zero [14]. All objects that have temperatures
above this value (that is 0 K or �273 1C) emit infrared
radiation from its surface [8]. The relationship between
the energy radiated by an object and its temperature is
described by the Stefan–Boltzmann law [15]. The mea-
sured infrared radiation emitted by one point of the skin
can be converted directly into a temperature value that
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represents this point and then mapped to a pixel in a
false-color image of the scene.

Thermal sensor used to capture infrared radiation
varies with the type of camera. Usually, the camera used
for biomedical proposes has sensors whose sensitivity is
around 0.05 1C and a range of capture that varies from
151 C to 45 1C. The generated images have a minimum
resolution of 320�240 pixels. The appropriate image
dimensions can vary with respect to the distance of the
patient to the camera. The camera estimates the human
body temperature based on three emitted components:
the radiation of the body, the radiation of the objects
that are in the neighbourhood and that is reflected by
the body, and radiation of the surrounding medium.
Some parameters must be set at the camera so that it
can estimate the influence of radiation of the medium
where the images are obtained. These parameters are:
emissivity of the human body (that is around 0.98),
environmental temperature, relative humidity, tem-
perature range of operation and distance between the
camera and the body. The camera converts the mea-
sured radiation by its sensor to a matrix with tempera-
ture values. Skin radiance is an exponential function of
the surface temperature, which in turn is an indicator of
the level of blood perfusion inside the body. Changes in
the blood perfusion may occur by a variety of reasons,
such as inflammation, angiogenesis, and previous trau-
mas [16,17].

Biomedical applications are especially concerned to
the measured temperature distribution, which is intrinsi-
cally connected to biological and physiological processes
related to some disease. Breast cancer cells produce nitric
oxide (NO) [18], it interferes with the normal neuronal
control of the blood vessel flow and causes a local
vasodilatation in the early stages of cancerous growth
enhancing the angiogenesis in later stages [19,20]. Sub-
sequent increased blood flow in the area causes a tem-
perature increase compared to the normal breast
temperature. Even deep breast lesions seem to have the
ability to induce changes in the skin temperature [21].
Breast cancer metabolic processes may also contribute to
the detectable heat increase. It is believed that in healthy
individuals, the temperature is generally symmetrical
across the midline of the body [22,17]. Subjective
interpretation of many diagnostic imaging modalities,
including infrared thermographic images, relies on the
underlying philosophy that normal contralateral images
are relatively symmetrical, and that asymmetries may
indicate any abnormality [23]. Therefore, IR thermogra-
phy can detect a breast disease by identifying areas of
asymmetric temperature distribution on the breast sur-
face [24–26]. These asymmetric temperature distribu-
tions are often associated with physiologic changes, as
well as the development of neoangiogenesis. Much of the
past and current uses of this technology have performed
measurements that assessed the differences when com-
paring both breasts [3]. Asymmetry between the breasts
is one of the most important signs that can be measured
and quantified [1]. Determination of areas within the
breasts that show a high level of blood perfusion, or
vessels are also of great importance. It is well known that
hot and cold spots are strong indicators of an underlying
dysfunction [27]. Most of the time, the thermogram
interpretation is based on exaggerate vascularisation,
hot spots and on asymmetries between breasts [23].

In numerical simulations, heat transfer in the breast
tissues was modelled by Pennes’ equation [28,29]. IR
images can be displayed in grey scale or in false-colour
by many types of palettes, depending on the camera or
software used. The number of colours and the RGB values
of each colour differ according to used palette. Tempera-
ture associated to each point of breast surface can be
applied in analysis and in detection of different kinds of
diseases. In conclusion, these aspects must be examined
to reveal functional behaviour in the case of normal or
abnormal heat distribution [30].

3. Thermal image acquisition and storage

Thermograms are sensitive to environmental changes
in temperature, humidity and air flow. As a result, they
need to be captured under strict protocols. A major factor
related to the inconsistency of works in the breast
thermography is the several protocols under which the
acquisition procedures are performed. Be able to provide
a database public and available to all researchers inter-
ested in such issue and a discussion about the use of a
unique protocol of capture are, perhaps, the most impor-
tant goals on the use of IR images in visual computing,
artificial intelligence applications and Computer Aided
Detection and Diagnosis (CAD) systems.

In this section, papers that describe acquisition proto-
cols and IR image storage techniques are reviewed, and
two tables are presented. Table 1 shows a collection of
image acquisition protocols described in the literature,
and Table 2 presents a relation of some data used in the
revised works.

3.1. Acquisition protocols

The thermal image acquisition can be categorized with
respect to the body behaviour under the heat transfer as
static or dynamic, and also categorized according to the
repetition as single, sequential or accompanied capture.
In static acquisition, the patient is in thermal equilibrium
with the environment. Dynamic acquisition is applied in
monitoring the recovery of the skin temperature after a
caused thermal stress (e.g., cooling or heating) or chemi-
cal stress (e.g., vasodilatations or vasoconstrictions). In
single acquisition, images of the patient are captured in an
instant of time. This kind of acquisition is suitable for
identifying hot and cold spots areas and for measuring the
asymmetries on the skin temperature distribution [31].
In the sequential mode, a series of images are acquired
sequentially over a period of minutes, which can be set in
the camera, previously. In the accompanied mode of
capture, acquired images are separated by a substantial
time interval (each 3 or 6 months) in order to monitor the
progress of some disease or to detect it earlier [31].

When a dynamic capture procedure is performed to
evaluate a thermal stress, the patient is exposed to a cool
airflow directed to her breast and images are acquired



Table 2
Summary of the number of acquisition and database used.

Paper Number of

captures per

patient

Public database/

number of

patients

Dedicated equipment

for positioning

Patients signed an

informed consent about their

images use

Koay et al. [48] Not specified No, 19 patients No Not mentioned

Ng and Kee [43] 3 images:

1 frontal, 2 lateral

No, 90 patients No Not mentioned

Arora et al. [32] 100 frontal images

per patient

No, 92 patients Yes: sentinel BreastScan Yes

Tang et al. [49] Not mentioned No, 117 patients Yes: TSI thermographic

system

Not mentioned

Agostini et al. [13] Movie in frontal

position

Not cited in the

paper

Yes: examination table

with the backrest inclination

of 401

Yes

Bezerra [45], Araujo et al. [34], Silveira

Filho et al. [59], Conci et al. [61–63]

and Silva [112].

8 images: 4 frontal,

4 lateral

Yes, 220 patients No Yes

Delgado and Luna [39] 3 images: 1 frontal,

2 lateral

Not mentioned No Not mentioned

Antonini et al. [38] 5 images: 1 frontal,

4 lateral

No, 3 patients No Yes

Kontos et al. [40] 3 images: 1 frontal,

2 lateral

No, 63 patients Yes: backless chair with

rotation

Yes

Wishart et al. [6] 250 images per

patient

No, 100 patients Yes: Sentinel BreastScan Yes

Table 1
Summary of the acquisition protocols.

Paper Type of acquisition Room temperature Special recommendations before capture

Koay et al. [48] Single/dynamic: the breast area

was cooled slightly with a fan for

approximately 20 min

22 1C For data collection, the patient was asked to avoid

alcohol, caffeine, pain medication, lotions, and stop

smoking two hours before the test

Ng and Kee [43] Single/static: 20 min to stabilize 20 to 22 1C and

humidity of 60

Reduction of heat fonts during acquisition. Patient

recommendations of no use of alcohol, cigarettes, skin

products

Arora et al. [32] Sequential/dynamic: 4 min in a

cold air directed at the breast

Not cited in the paper Not mentioned

Bezerra [45], Silveira

Filho et al. [59], Araujo

et al. [34], Motta [35]

Single/static: 10 min 25 to 28 1C Without special recommendations.

Agostini et al, [13] Sequential/dynamic: 50 frames/s

to 200 frames/s

Not cited in the paper Not mentioned

Acharya et al. [44] Single/static: 15 min to stabilize 20 to 22 1C (within70.1 1C),

and humidity was

maintained at 60%75%

Not mentioned

Delgado and Luna [39] Single/static: 15 min to stabilize 18 to 23 1C Not mentioned

Kapoor and Prasad [33] Single/dynamic: 7 to 10 min in a

directed cold air at the breast

22 1C Capture in a dark room for minimum interference

Amri et al. [37] Single/static: 10 to 20 min to

stabilize

18 to 22 1C Patient recommendations of no use of alcohol

consumption, physical exercises, skin products

Kontos et al. [40] Single/static: 10 to 15 min to

stabilize

22 1C Not mentioned

Wishart et al. [6] Sequential/dynamic: 5 min in a

cold air directed at the breast

Not mentioned Not mentioned

ACCT [41] Accompanied/static Not mentioned Not mentioned
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during or after the exposure [5,32,33]. The examination
procedure proposed by Arora et al. [32] takes about 4 min
per patient, and the dynamic sequential acquisition pro-
duces more than 100 thermal images during administra-
tion of a cold stress. Registration of images in time is
assisted by three markers on the patient skin. In the single
dynamic acquisition used by Tejerina [5] and Kapoor and
Prasad [33], the breasts are cooled slightly for 7 to 10 min,
just before image capture. The recommended room tem-
perature for this procedure is of approximately 22 1C, and
the room must be darkened during the test in order to
minimize the interference from other infrared sources.
The controlled room temperature condition is intended to
ensure that, the heat loss due to evaporation may be
neglected. Severity of room temperature and the adaption
time to room temperature when thermography is used for
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screening test was investigated by Usuki et al. [23].
In dynamic acquisition with cold stress protocols, skin
temperature pattern is regarded as a balance between
heat conduction from deeper vessels and tissues, and heat
loss by air convection and radiation at the surface. Besides
image capture, some interest aspects must be registered,
such as patient age and date of the first day of last
menstrual period, because hormonal fluctuations are
related to temperature variations and they could affect
the stability of thermographic measurements [22].

In single static acquisition protocols, patients spend
from 10 to 20 min for acclimatization before image
acquisition [34–40]. Most of the works suggested that
the room must have a controlled temperature in the range
of 18C to 22 1C and humidity about 60%. However, there is
case where images are acquired in tropical climate region
(25 1C to 28 1C), when conditions of temperature and
humidity are registered, but not controlled [36].

In the American College of Clinical Thermology (ACCT)
[41] protocol, patients are partially disrobed, and the
medical history is taken. The first acquisition is called
thermal signature, and it is used to compare with other
thermograms from the same patient. Patients are required
to take a new thermogram after 3 months (static accom-
panied protocol).

An alternative acquisition protocol was tested by
Agostini et al. [13]. The proposed protocol aims to observe
the influence of skin temperature fluctuation and blood
perfusion. The authors acquire a sequence of consecutive
thermal images with rate ranging from 50 to 200 frames/
s. Then they use the frequency domain of the small
temperature fluctuation in the breast area, rather than
considering the classical static skin temperature. Each
sequence is comprised of 500 thermal images with
dynamic range of 14 bits and 256�256 pixels.

On the day of acquisition, patients are ideally required
to avoid other controllable factors that could potentially
to produce effects on the skin temperature such as alcohol
consumption, physical exercise and application of cos-
metic preparations on the breast surface [42,43]. Kapoor
and Prasad [33] recommend their patients to avoid
alcohol, caffeine, stop smoking two hours before the test,
and do not apply lotions on the body area to be
imaged. Ng and Kee [43] also instruct their patients to
abstain from any physical activities for 20 min before the
exam to reduce the body metabolism and stabilize the
body temperature. Acharya et al. [44] consider patients
within the period of the 5th to 12th and 21st day after
menstrual cycle.

3.2. Positions and number of captured images

A universally accepted acquisition protocol was not
defined for thermal imaging yet. As a result, each clinic
and hospital acquires a different number of images in
each acquisition section and assumes different patient
positions in relation to the camera. Agostini et al. [13] use
only one frontal image per patient with their arm up
and hands resting over their heads. Tejerina [5] uses at
least three positions: (i) frontal with hands on the head;
(ii) external lateral of the right breast, and internal lateral
of the left breast; and (iii) external lateral of the left breast
and internal lateral of the right breast. Delgado and Luna
[39] use a static protocol where three thermal images are
acquired: (i) frontal; (ii) left oblique; and (iii) right
oblique. The static protocol described by Antonini et al.
[38] defines five capture positions: (i) frontal, (ii) right
semi-oblique; (iii) left semi-oblique; (iv) right oblique;
and (v) left oblique. Three images were obtained from
each patient by Kontos et al. [40]: (i) frontal; (ii) the left
and (iii) the right oblique at 451 to the midline to
exposure all aspects of the breasts. During the examina-
tion, the patients of Ng and Kee [43] are required to take
off the top clothing and their hands are positioned behind
their heads, then three thermograms are taken: one
frontal and two lateral. A minimum of eight images per
patient: (i) frontal, with arms lowered and hands on the
hips; (ii) frontal, with hands on the head; (iii) only the
right breast; (iv) only the left breast; (v) external lateral of
the right breast; (vi) external lateral of the left breast; (vii)
internal lateral of the right breast; and (viii) internal
lateral of the left breast are acquired by some works
[35,45–47].

3.3. Cameras and acquisition systems

Ng and Kee [43] collected breast thermograms of 90
patients in Singapore General Hospital using a thermal
camera Avio TVS-2000 MkII ST. Arora et al. [32] uses the
Sentinel BreastScanTM (Infrared Sciences Corp.). During
the exam the patient sits on a chair disrobed from the
waist up, with her arms on the armrests. Once the exam
begins, the patient’s thermal images are being recorded
for analysis. A few seconds later a cool air flow is turned
on. The examination lasts approximately 3 to 4 min. The
system searches for signs of abnormal angiogenesis, as
well as asymmetric thermal indicators. Analysis takes
approximately 4 to 5 min and a report is generated. Tang
et al. [49] considers 117 patients from the People’s
Liberation Army General Hospital (PLAGH), China. Images
were acquired using the TSI-21 Thermographic System
[50]. These images were of 256�256 pixels, 47 with
malignant tumours and 70 with benign cases. In the
Agostini et al. [13] acquisition, the patients were asked
to lie down onto an examination table with backrest
inclination of 401 from the horizontal plane. The optical
axis of the infrared camera was perpendicular to the
backrest of the examination table. The camera was placed
at a distance of 220 cm from patient. The authors used
one AIM256Q camera produced by AEG infrarot-Module
GmbH, having a noise equivalent temperature difference
(NETD) equal to 17.3 mK at 300 K, with an interpolation
time equal to 20 ms. Wishart et al. [6] have studied the
performance of IR in 100 women prior to their breast core
biopsy. They used Sentinel BreastScan apparatus. Four
different models of this system of examination are com-
pared: screening, neural networks, manual by experts and
an artificial intelligence method that the authors call
NoTouch BreastScan. Comparisons are separated by ages
(under 50, 50–70 and over 70) and consider sensitivity
and specificity. The study was carried out from June 2007
to January 2009 with patients from the Addenbrooke’s
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Hospital, Cambridge, UK. All patients signed a consent
term. Images were taken with patients disrobed to the
waist and appropriately positioned in an ergonomic chair
with arms supported at eye level. Nurhayati et al. [51]
present a research performed at the Yogyakarta Hospital
in which 150 women were examined. Digital thermal
camera Fluke was used for thermogram acquisition. Three
groups, each one with 50 patients was then assigned,
consisted of healthy, chemotherapy and advanced group.
Kontos et al. [40] considered a total of 126 breasts
examined of 63 patients (58 women and 5 men). The
average age of patients was 47.6 (between 26 and 82
years). Cancerous lesions were diagnosed in 20 breasts.
Before taking the examination the patients signed a
consent term allowing their thermal images were used
in studies. Patients were instructed to sit on a backless
chair with rotation with their hands on the top of their
head. The thermographic camera was positioned at 1 m
from the chair. The Meditherm med2000 thermal imaging
system [52] was used for the thermographic imaging. The
works of the PROENG project [36] acquire images from
patient of the University Hospital of the UFPE (Brazil).
More than 220 patients were examined until 2011 by
use of a Flir ThermaCAM S45 [55] in 320�240 pixels
[34,35,45–47,53,54].

3.4. Public available databases

Storage of IR breast thermal images in databases and
their categorization could contribute to advance the state
of art in the analysis of thermograms. Such databases
could support specialists and students in diagnostic deci-
sions providing both educational and research activities.
They could also be analysed by Artificial Intelligence and
Data Mining algorithms for machine learning purposes.
Unfortunately, in contrast to other types of medical
images (e.g., mammography, ultrasound or magnetic
resonance), there is no expressive public database in
digital infrared thermal images as the Digital Database
for Screening Mammography (DDSM) or Mammo-
graphic Image Analysis Society (MIAS) [56]. Thermo-
grams have been stored mainly in private image
database, available only to internal diagnosis proposes
[5,57], and mostly of the time only the patient and his
physician could access the images. Maintenance of a
public database available for all interested researchers
is of great importance to improve the possibilities of
research in the area.

Koay et al. [48] developed a study where they have used
thermal images of 19 patients selected from a total of 86
images acquired in 1984 by the team of the Moncton
Hospital. From these images, 14 were from patients with-
out any pathology and 5 were from patients with pathol-
ogy. The works of Bezerra [45] and Araújo et al. [34]
describe a public available database [58]. Thermograms
can be accessed by searching for specific unique identifiers,
such as the number of IR acquisition or the patient’s
medical record number. Image search can be done also
for more general fields, such as age, type of capture, patient
diagnosis or exam date. Thermograms stored in this
database have been taken from patients of the University
Hospital of UFPE (Brazil) or from volunteers that have
signed a consent form allowing the use of their images
[36]. The acquisition and storage of images were approved
by Ethical Committee of UFPE and registered at Brazilian
Ministry of Health; all patients signed a consent term
allowing the publication in the database and free use of
their images. Silveira Filho et al. [59], Serrano et al. [60],
Motta [35], Motta et al. [47], Viana et al. [46], Conci et al.
[61–63] and Borchartt et al. [54,64] use this database.
Motta et al. [47] present a subset of this database,
which includes some ground true of ROI segmentations
performed by specialists [36].
4. Pre-processing, segmentation and ROI extraction

Segmentation of ROI intends to separate the main
parts of the rest of the image. The breast is made up of
connective tissue, fat, lobes and ducts. Each breast also
presents blood and lymph vessels. Lymph nodes filter
substances present in the lymph and help fight against
infections and diseases. Clusters of lymph nodes are
found in the axillar region (that is under the arm), above
the collarbone, and chest. The ROI extracted from the
acquired images must include all breast tissues and the
near ganglion groups related as much as possible. Some
medical suggest the inclusion of half of the arm in it.
About 75% of lymph from the breasts drains into the
axillar lymph nodes, making them important to the
diagnosis of breast cancer. Fig. 1 shows the lymphatic
system of the mamma near the throat (or neck) and the
axillar glands. Extraction of the region of interest (ROI)
limits based on the IR images is a challenging task due to
the amorphous nature and the lack of clear limits in these
images [65]. Due to the difficulty in developing fully
automatic systems, most authors prefer the manual or
semi-automatic ROI extraction.

Lipari and Head [66] proposed an algorithm of semi-
automatic segmentation where each breast is divided into
four quadrants. Four reference points, informed by the
user, divide the breasts: the chin, the left side, the right
side and the bottom edge of the breast. Each of these
points connected to the nipple separates the image into
four distinct quadrants.

Herry and Frize [67] performed statistical analysis and
compare the intensity distribution on both breasts. From
such an analysis they extract the contours using a simple
contour detector and morphological operations. However,
the authors state that the initial segmentation may be
done manually.

Zhou et al. [65] proposed the use of an automatic
algorithm based on Level Set Method (LSM) to extract the
edges of an object in a thermal image. The proposed
approach is based on direction and magnitude of edge
pixels. An edge map represents the gradient magnitude
and direction. Linear and isotropic features based on
Gaussian filter are used to obtain this edge map. Three
or four randomly selected points within the ROI (or on its
edge) are used as initial points. Initial pixels localize the
place where the evolution of the method begins and
provide information about the gradient.



T.B. Borchartt et al. / Signal Processing 93 (2013) 2785–2803 2791
The segmentation procedure proposed by Scales et al.
[68] is comprised of eight steps: (i) manual removal of
body borders (as shoulders and waist); (ii) contour
detection by using Canny edge detectors; (iii) elimination
of left and right body limits; (iv) use of two approaches:
Hough transform (HT) and connected components for
improving detection of the lower border; (v) interpolation
of detected border by curves; (vi) detection of region with
greatest curvature in left and right sides of the body; (vii)
estimation of breast upper limit using empirical rules;
and (viii) isolation of ROI based on the frontiers found in
previews steps. The authors report that only 4 from a set
of 21 images presented satisfactory ROI detection results
when the HT-based approach was applied. From the poor
results, 12 of them were due to detection of the infra-
mammary fold and, for the other ones, the error was
attributed to the bad edge detection. The connected edge
detection-based algorithm achieved successful segmenta-
tion in 13 of 21 images. Moreover, 2 of the 8 unsuccessful
detections could become satisfactory if the parameters of
the edge detection scheme were set manually [68].
Additionally, another image would become satisfactory
if a larger neighbourhood is used in detection of con-
nected pixels.

Qi et al. [69] applied segmentation techniques based
on edge detection. They noticed that the use of a naı̈ve
edge detection scheme would result in several undesired
curves inside body region. Since the inframammary fold
has an almost parabolic shape, the intra-body detection
issue is overcome by using a parabolic HT. Body borders
were identified using three limits: (i) axillar, obtained
from the points of greatest curvature; (ii) breast border,
from the found HT parabola; and (iii) central point, from
the intersection point of the HT parabolas. Some char-
acteristics may be observed in their result, such as lost of
some breast area, and ROI’s lack of symmetry. The first
drawback may discard regions with possible lesion, and
the second might disturb some automatic diagnosis
methods based on comparison of mirrored regions.
Besides the technique not be fully automatic, it is possible
to see the disparity in the size of each breast obtained.
These, as mentioned before, could be undesirable for CAD
systems based on comparisons of corresponding parts.

Jin-Yu et al. [70] presented a genetic algorithm based
on chaotic two-dimensional Otsu method [71]. This
algorithm can be used in generic IR thermal images,
not only in breast thermograms. The proposed method
was designed to segment regions with higher tempera-
tures in thermal images presenting high levels of noise.
It is comprised of four steps: (i) use logistic mapping
equations to initialize the population of the genetic
algorithm; (ii) use the chaotic two-dimensional Otsu
method [71] to calculate fitness of current population;
(iii) when the end condition is achieved, the best indivi-
dual is returned and the algorithm ends, otherwise the
procedure continues; (iv) generate a new population by
selection, crossover and mutation operations and return
to step (iii). Each individual of the population represent
a possible ROI segmentation. Authors report that average
time of the segmentation to 10 thermograms with
dimensions of 198�173 pixels is 4.83 s.
Schaefer et al. [72] used statistical methods and fuzzy
classification to diagnose breast cancer, but their ROI’s
segmentation was done manually by experts.

Kapoor and Prasad [33] proposed an automatic seg-
mentation technique composed by two main steps. In the
first step, a Canny edge detector to extract the lateral
boundaries of breast is used. The second step uses a HT to
extract lower breast boundaries.

Motta et al. [47] presented a fully automatic segmen-
tation method. Such method is based on automatic
threshold, automatic border detection, and extraction of
inframammary folds by using mathematical morphology
and cubic-spline interpolation. The described approach
separates both breasts as much symmetrically as possible.
There are two drawbacks in this method of automatic ROI
extraction. The first is that the detected ROI’s upper limit
(i.e., the lower line crossing the axilla) may exclude a
portion of the upper quadrant of the breast. The second
drawback is not including the lymphatic nodes of the
mamma in the axillar regions (see Fig. 1). Although both
regions may present cancer, the second is usually
neglected by automatic segmentation techniques.

Motta [35] also improves a previous approach [47].
The new method has 7 main steps: (i) a threshold is used
to detect the inframammary fold which is considered as
ROI lower limit; (ii) Otsu’s method [71] is employed to
remove the background; (iii) ROI upper limit is obtained
by detecting the axilla; (iv) arms and external objects are
removed by detecting the largest object in the image; (v)
body central axis is used to separate the breast; (vi)
inframammary fold is found; and (vii) a vertical displace-
ment is performed to make each ROI more adequate for
feature extraction based on the symmetrical analysis.
Motta [35] applied his approach to 150 patients and
compared them to manual (Ground true) segmentations
performed by 5 specialists. The resulting ROI’s are avail-
able for public comparison [36]. Such automatic results
were evaluated qualitatively and quantitatively consider-
ing the rates of false positives, false negatives, true
positives and true negatives.

Kafieh and Rabbani [73] presented a wavelet-based
denoising method for breast infrared images. They model
the noise variance as a function of the image intensity and
use a wavelet-based maximum a posteriori estimator for
noise removal. An interesting aspect of this paper is a
review of other 10 works concerning noise removal in IR
images.

Zadeh et al. [74] used a parabolic HT for ROI segmen-
tation. For this purpose, edges are detected through a
logarithmic method. Unfortunately, initial results of the
edge detection are contaminated with high rates of noise.
As a consequence, the computational cost of HT becomes
higher. In order to avoid this issue, the authors apply a
6�6 Gaussian filter for noise reduction.

Borchartt et al. [54] use a segmentation method
proposed by Motta [35]. They calculate the performance
of Motta methods. On average, the total processing time
for ROI extraction was 36.63 s. However, more than 96%
of this time is due to the execution of the HT algorithm
(35.17 s). The maximum total time obtained was 83 s,
where 82 s was expended only in achievement of HT. The



Table 3
Summary of segmentation and ROI details of revised articles.

Paper Degree of

automationa

Region

includedb

Validation

Lipari and Head [66] 1 LN Not specified

Herry and Frize [67] 0 P Not specified

Zhou et al. [65] 2 P Compare with other simple method of edge detection

Scales et al. [68] 1 P 2 approaches for segmentation are presented and compared

Ng and Kee [43] 0 P Not specified

Qi et al. [69] 2 P Not specified

Jin-Yu et al. [70] 2 P Not specified

Schaefer et al. [72] 0 P Medical experts made the segmentation

Kapoor and Prasad [33] 2 P Not specified

Motta [35], Motta et al. [47]

and Borchartt et al. [54]

2 P The images were manually segmented by five

experts to compare the results

Zadeh et al. [74] 2 P Not specified

a Degree of automation: 0—manual; 1—semi-automatic; 2—fully automatic.
b Region included: P—primary breast region; LN—lymph nodes region.
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minimum total time for ROI extraction is 8 s, where 7
were spent only in the HT algorithm. Table 3 summarizes
the different segmentation and ROI extraction approaches
commented.

5. Feature extraction

Compared to other types of medical imaging, thermo-
graphy has a very low cost. On the other hand, it presents
some disadvantages that are not common to other early
cancer detection methods, such as (i) its relatively low
sensitivity for deep and small tumours, (ii) its inability to
distinguish tumours from other ‘‘hot spots’’ like local
inflammation, and (iii) subjectivity used by physicians
while interpret IR images for diagnostic purposes [16].
Computer vision and pattern recognition techniques may
overcome those disadvantages. The first steps toward
using these techniques are related to choosing character-
istics that will be extracted from the IR images in order to
compose a feature vector, and how to compare such
vectors. This section presents a chronologic review on
works related to feature extraction and comparison of
breast thermal images.

Lipari and Head [66] considered asymmetry between
breasts and quadrants. The features extracted are: mean,
median, standard deviation, maximum and minimum
value of temperature for each breast and each quadrant.
The paper does not present any results in sensibility or
specificity, only some comparisons between values of
features extracted from each breast and quadrant.

Kuruganti and Qi [27] segmented each breast in
thermal images using generalized HT to extract parabolic
curves defining the lower part of the breast. In turn, the
following features are extracted from the histogram of
each breast region: four moments (mean, variance, skew-
ness and kurtosis) and entropy measures. They used 6
normal thermograms and 18 cancerous thermograms to
validate the proposed classification scheme. The authors
observe that the high-order statistics (skewness and
kurtosis) are the most effective features to measure
asymmetry, while low-order statistics and entropy do
not assist in detection of asymmetries. For testing their
methodology, the authors have used the correlation
measure to asymmetric analysis. From the set of features
derived from the testing images, the existence of asym-
metry is verified by computing the ratio of feature of left
to the right ROI.

Koay et al. [48] extract 10 features from thermal image
for each quadrant of each breast. Quadrants are defined
having the nipple as a common point. Extracted features
are: mean temperature difference, standard deviation
difference, median, maximum, minimum, skewness,
kurtosis, entropy, area and heat content. After feature
extraction, the authors use the SPSS statistical software
to determine the correlation among the features. Five
features are highly correlated: mean temperature differ-
ence, standard deviation difference, skewness, kurtosis
and heat content [48].

Ng and Kee [43] analyse 82 patients, where 30 of them
are asymptomatic patients (aged 5178), 48 patients have
benign breast abnormality (aged 46710), and 4 patients
developed cancer at least on one breast (aged 4575).
The authors estimate the temperature of each breast
points and compute median, modal and mean tempera-
ture of the breast. They also consider in the analysis other
characteristics (such as age, family history on breast
cancer, hormone replacement therapy, presence of palp-
able lump, age of menarche, previous breast surgery or
biopsy, presence of nipple discharge, pain in the breast,
menopause over 50 years, and first child over 30 years
of age).

Qi et al. [69] describe two methods for IR diagnosis of
breast diseases. The first is based on the thermal histo-
gram of patients posterized in ten levels of grey. From
these histograms the k-means algorithm is used to decide
if the patients are ‘‘with disease’’ or ‘‘health’’. The k-means
algorithm builds clusters for possible classifications, and
it considers the distance from set of characteristics to the
centroid of the clusters for decision. The second method
presented by Qi et al. [69] uses mean, variance, skewness,
kurtosis, correlation, entropy and joint entropy as char-
acteristics for composition of a feature vector. They
suggest that the classification using these features should
be made through the algorithm of k-nearest-neighbour
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(KNN). However, they do not present the evaluation
results, only the extracted features.

Tang et al. [49] propose the analysis of what they
named localized surface temperature increases (LTI) from
thermal breast images. The LTI is showed as spot or
vascular pattern in the thermograms. They propose a
two-step process to realize the cancer detection: (i) the
visual finding of suspicious focus in breast, and (ii) the
measure of the LTI amplitude [49].

Schaefer et al. [75] proposed an application of content-
based image retrieval (CBIR) to thermal medical images.
CBIR allows the retrieval of similar images based on
features directly extracted from the image data. These
features are then stored alongside the image and words.
The authors use two-dimensional Cartesian moments and
each thermal image is thus characterised by its four first
moment invariants.

Wiecek et al. [76] suggest as features statistical
parameters of the first order (i.e., obtained without
considering the neighbourhood), characteristics based on
histogram, and the second order features (i.e., considering
the location of pixels) from the matrix of co-occurrences.
The used first-order parameters are: mean temperature,
standard deviation, variance, skewness and kurtosis mea-
sure. The second-order measures are: energy, variance,
difference variance, correlation, inverse difference and
entropy.

Schaefer et al. [72,77] build a feature vector with 38
features. The first four features are ROI’s basic statistical
features, namely the absolute difference of the mean
temperature, the standard deviation, the median tem-
perature and the 90-percentile of left and right breast.
Other four are based on image moments: absolute differ-
ence between the ROI centre of gravity, geometric centre,
and the first moments (m01 and m10). Some of the used
features are from the normalized histogram of both ROIs:
the cross-correlation between the two histograms, the
absolute value of the maximum difference histogram, the
number of bins of the difference histogram exceeding an
empirically chosen threshold, the number of zero cross-
ings, the energy and the difference of the positive and
negative parts of the histogram. Other eight features are
derived from cross co-occurrence matrix: homogeneity,
energy, contrast, symmetry, and the first four moments.
One element of their feature vector is computed as the
sum of each breast’s entropy and the joint entropy.
Two features came from the Fourier spectrum: the max-
imum difference of the values of the spectrum and
the maximum distance this position of spectrum to the
centre of the graphic. After application of Laplacian filter
to enhance image contrast, the authors extract nine more
Fourier transform-based features: the mutual information
and the eight features of cross co-occurrence matrix.

Silveira Filho et al. [59] assessed the image texture
using a gliding box algorithm considering the image
lacunarity measures [78,79]. They show that lacunarity
can be used to distinguish between thermal images of
patient with or without pathology. Serrano et al. [60] and
Conci et al. [63,80] improve the method developed by
Silveira Filho et al. [59] and extracted a total of 133
features, where 36 of them are Hurst coefficients and 97
features are from lacunarity. Hurst coefficient is a fractal
dimension that is related to density, in other words, how
much the image or object occupies the space that contains
it. For texture feature extraction by Hurst coefficient,
the authors compute mean and standard deviation using
the right and left breasts, and subtraction of both through
a movable windows varying among 5, 7, 9, 11, 13 and
15 pixels. The lacunarity-based features were computed
using a sliding box varying from 2 to 25 pixels.

Acharya et al. [44] present a study with 50 IR breast
images (25 normal and 25 cancerous). They extract from
the images a set of 16 texture features: homogeneity,
energy, entropy, first to forth moments computed for the
co-occurrence matrix, angular second moment, contrast,
mean, short runs emphasis, long runs emphasis, grey level
of non-uniformity, and the run percentage from the run
length matrix. But, only four features: first moment, third
moment, run percentage and grey level non-uniformity,
were selected as they were clinically significant compared
to the other features.

Kapoor and Prasad [33] use statistical parameters such
as skewness and kurtosis as features. They state that the
larger the tumour is, the larger it is the temperature
variation. They use the cumulative histogram for repre-
senting the temperature variation with the area to reflect
the asymmetry. However, no segmentation results are
reported. In addition, neither they made any comments
about their results on classification nor even compare
their work with others.

Nurhayati et al. [81] use tabulated first order statistics
features: mean, standard deviation, variance, entropy,
skewness and kurtosis. In Nurhayati et al. [51] the first
order statistics features are combined with principal
component analysis (PCA) method. The authors plot each
feature chosen by PCA technique with the mean or
variance feature in graphics and present a clustering
approach.

Tavakol et al. [82] made a comparison between con-
tralateral breast images to find asymmetric temperature
distribution. They use as feature the mutual information
associated with nonparametric windows technique to
enhance the resolution to a highly oversampled image.
Their experiments were performed with 60 simulated
breast thermal images. Results showed that the more
similar the thermal images of right and left breasts are,
the closer it is the normalized mutual information value
to one.

Zadeh et al. [74] use a set of 120 patients to extract
four features: average, variance, skewness and kurtosis.

Resmini [53] had used images from patients with
breast cancer, benign tumour, and with no diseases.
Images were segmented and divided in four quadrants
of equal size. Each quadrant presents a given number of
pixels. Non breast regions are removed of the analyses.
The methodology proposed extracted a total of 712
features divided in three groups. First group had used
32 features based on simple statistical measure: average,
standard deviation, range between minimum and max-
imum tone of grey scale pixel and the area of last bin in a
posterization on ten bins. Second group had used Higuchi
Fractal Dimension as feature extractor, and provide total



Table 4
Summary of the feature extraction.

Paper Feature extraction Evaluation criteria Comparison Special characteristics

Lipari and Head [66] Mean, median, standard deviation, maximum and minimum value

of temperature for each mama and each quadrant

Not specified Not specified Not specified

Kuruganti and Qi

[27]

Means, variance, skewness, and kurtosis, the

peak pixel intensity of the correlated image, entropy and joint entropy

Correlation measure to

asymmetric analysis

Not specified Not specified

Koay et al. [48] Mean, standard deviation, median, maximum, minimum, skewness,

kurtosis, entropy, area and heat content

Artificial neural network

(ANN) with back

propagation

Not specified At end, they use just two

features: mean and standard deviation

Ng and Kee [43] Mean, mode, points of temperature, median and

biological data of patient

ANN, RNFN Human specialist

evaluation

Linear regression

and correlation

Arora et al. [32] Proprietary System Three way: screening,

clinical and ANN

Biopsy Not specified

Qi et al. [69] Histogram, mean, variance, skewness, kurtosis, correlation,

entropy and joint entropy

k-means and k-nearest-

neighbourhood

Not specified Not specified

Tang et al. [49] Local temperature increase amplitude by morphological signal

processing

Not specified Not specified Not specified

Wiecek et al. [76] Mean, standard deviation, variance, skewness, kurtosis, energy,

variance, difference variance, correlation, inverse difference and

entropy

ANN Not specified Not specified

Schaefer et al.

[72,77]

Basic statistical features, moments, histogram features,

cross co-occurrence matrix, mutual information, and

Fourier analysis

Fuzzy rule-based

classification system

Compares outcomes of accuracy

with other examination modalities

as mammogram and MRI

Not specified

Silveira Filho et al.

[59]

Lacunarity measure Graphic with the straight

obtained for each breast

Diagnosis by biopsy Not specified

Serrano et al. [60]

and Conci et al.

[62,63]

Lacunarity measure and Hurst coefficient Graphic with the straight

obtained for each breast

Diagnosis by biopsy Not specified

Nurhayati et al.

[51,81]

Mean, variance, skewness, kurtosis, entropy Graphics with features

chosen by PCA technique

Not specified Not specified

Acharya et al. [44] Homogeneity, energy, entropy, 4 first

moments, entropy, angular second

moment, contrast, mean, short and long runs emphasis,

run percentage, grey level and run

length non-uniformity

Support vector machine

(SVM)

Not specified Three-fold stratified cross validation was

used to test the SVM classifier. 36 images

for training (18 normal and 18 malignant)

Kapoor and Prasad

[33]

Temperature variation, skewness and kurtosis Clusterization Not specified Not specified

Borchartt et al. [64] Range of temperature, mean, standard

deviation and the last bin of a

quantization of ten bins

SVM Diagnosis by biopsy Not specified

Zadeh et al. [74] Mean, variance, skewness and kurtosis k-means and

c-means

Not specified Not specified

Wishart et al. [6] Not specified Four way: screening, clinical

and two ANN

Biopsy and sentinel

BreastScan results

Not specified

T
.B

.
B

o
rch

a
rtt

et
a

l.
/

Sig
n

a
l

P
ro

cessin
g

9
3

(2
0

1
3

)
2

7
8

5
–

2
8

0
3

2
7

9
4



T.B. Borchartt et al. / Signal Processing 93 (2013) 2785–2803 2795
of 40 features. And third group had used 640 features
based on geo-statistic measures: Moran index and Geary
coefficient.

Borchartt et al. [64] extract some simpler statistical
features from IR images: range (i.e., the difference
between the pixels of greater and lesser intensity); mean
intensity; standard deviation, to show the dispersion of
ROI pixels intensity from the mean; and a feature called
‘‘quantization’’, which measures the area occupied by a
bin with the higher grey scale in a posterization in eight
bins. For classification the authors used 28 images, being
24 from patient with pathology and 4 from patients
without any pathology. In other work, Borchartt et al.
[54] combined the features proposed by Serrano et al. [60]
and Borchartt et al. [64].

The main points of the above papers are compared in
Table 4.

6. Classification and evaluation measures

A key step in pattern recognition techniques is the
classification and evaluation of the measured features
[83]. In the case of thermal images of the breast, this step
is responsible for pointing out if the patient has a healthy
or an unhealthy breast. As one could expect, in order to
perform the classification it is necessary to use some
decision techniques. The classification between healthy
and unhealthy breast image is a binary classification
problem. In this case, four possible cases are considered:
true positive (TP), which correspond to diseased breast
that is correctly classified as unhealthy; false positive (FP),
where a healthy breast is incorrectly classified as
unhealthy; true negative (TN), where a healthy breast is
correctly classified as healthy; and false negative (FN),
which corresponds to a diseased breast that is incorrectly
identified as healthy. Using the obtained classification
results (i.e., the number of images in each one of these
four classes), the most common performance measures
are [84]: accuracy¼(TPþTN)/(TPþFPþFNþTN), preci-

sion¼TP/(TPþFP), sensitivity (or recall)¼TP/(TPþFN),
and specificity¼TN/(TNþFP). Trade-off measures are also
often used. For example, the F1-score, that is, the harmo-
nic mean between precision and sensitivity. Graphical
tools allow comparing the performance of different clas-
sification algorithms. In particular, one of the most used
representations is the Receiver Operating Characteristic
(ROC) curve that displays TP rate against FP rate for
different compared classifiers [83]. Most work on the
analysis of breast thermal images provide classification
results using the accuracy, specificity and sensitivity
measures or/and also present the corresponding ROC
curves of their methods [83].

Other essential aspect in any automatic image pro-
cessing systems is pattern classification [84]. In this
stage, a class or label is automatically assigned to each
of the test patterns. In case of supervised classification, it
is assumed that a collection of training patterns is given,
and these consist in labelled patterns where their corre-
sponding correct class is known and also given. With
these learning patterns the classification system learns
to generalize and it is able to classify non-labelled test
patterns. Non-supervised classification assumes non-
labelled training data and it aims to determine classes
during learning stage in order to correctly classify new
test patterns. Common supervised classification techni-
ques applied to breast thermal image analysis are neural
networks, like multilayer perceptrons (MLP) [85,86] or
radial basis function (RBF) networks [87], and support

vector machines (SVM) [44,64]. Among non-supervised
techniques, the most common ones are clustering
algorithms like the k-means method [88,74], and self-

organizing maps (SOM) neural networks.
In many practical classification problems, the involved

patterns present a high dimensionality (i.e., great number
of features that describe the patterns). In these cases, it
becomes necessary to map the high-dimensional data into
a lower dimensional space that preserve as much as
possible the information represented in the patterns. Data
dimensionality reduction [89] is carried out before the
classification stage. The data mapping can be linear, like
in principal component analysis (PCA), linear discriminant
analysis (LDA) and independent component analysis
(ICA); or non-linear, like non-linear PCA and Kohonen
maps.

Amo et al. [90] use fuzzy classifiers to assign
degrees of membership (or soft labels) for a pattern
to consider multiple classes and take decisions based
on membership values. A fuzzy classification result can
be de-fuzzified to produce crisp result. Fuzzy classifi-
cation methods, and in particular rule-based fuzzy
classifiers, present several advantages like: the hand-
ling of uncertainty along the classification process, to
be more robust under errors in input data, the number
of needed rules are much lower than in crisp systems
and these systems are close to human reasoning. In
this context, hybrid neurofuzzy systems [91], fuzzy
c-means [88] and fuzzy rule-based approaches [77]
have been mainly applied to analysis of breast thermal
images.

Among the works that apply supervised methods on
breast thermal image analysis, different types of artifi-
cial neural networks were used. Results using MLP are
presented in Ng and Fok [85]. These authors report
values of 61.5% for accuracy, 68.9% for sensitivity and
around 40% of specificity. Using RBF networks for
binary image classification, Ng et al. [87] report better
results: 81.2% of sensitivity, 88.2% of specificity and
80.9% of accuracy results. SVM were used in Borchartt
et al. [64] for breast disease diagnosis and their pro-
posed method reported average results of 85.7% of
accuracy, 95.8% of sensitivity and 25.0% of specificity.
Acharya et al. [44] also applied SVM for automatic
classification of images as normal and malignant breast
conditions. Their system offers an accuracy of 88.1%,
sensitivity of 85.7% and specificity of 90.4%.

Jakubowska et al. [86] applied two approaches for
dimensionality reduction, PCA and LDA, respectively, to
reduce the number of features computed after the appli-
cation of a wavelet transform on breast thermal images.
Later the dimensionality reduction, reduced-dimensional
images are classified as healthy or pathological using a
MLP neural network.
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Koay et al. [48] described a configuration of artificial
neural network (ANN) with Back Propagation (BP) that is
unsuccessfully applied in the classification of the subset
of five features. After reducing the subset of features to
only two of them (mean temperature difference and
standard deviation difference) an ANN using only one
hidden node (1-1-1) reported only two false negative
outcomes. According to theses authors, a possible expla-
nation for the false negative outcomes is the small
number of images of patients with cancer (just 19 images
being 14 from normal diagnostic and 5 from abnormal
diagnostic). In order to fully assess the ability of ANN to
predict true outcomes based on statistical inputs, the
authors claim that more patients should be recruited for
the study [48].

The Fuzzy Adaptive Learning Control Network-Another
Adaptive Resonance Theory (FALCON-AART) [91] is an
example of hybrid fuzzy-neural system with good classi-
fication capabilities at reduced training times. FALCON-
AART achieves an accuracy result of 90% for breast
tumour detection, and accuracy of 93% when discriminat-
ing benign and malignant breast tumours.

In the Ng and Kee work [43] the classification was
made using an ANN. Linear regression was applied in data
and a RBF network was used to decide the diagnostic in
pathologic case (i.e., cancer or benign tumour) or health
patient. The validation of the proposed approach was
performed using ROC curves. The authors reported preci-
sion of 80.95%, sensibility of 81.2% and specificity of
88.2%. Such values are much better than the typical ones
achieved by human specialists, around 60 and 70%.

The method proposed by Tang et al. [49] considers
that carcinomatous breast possibility is proportional to the
maximum increment (or amplitude) of the suspicious
focus region. They use morphological signal processing to
determine these amplitude values and determine an opti-
mal threshold for cancer detection from the ROC curve
based on Youden’s index maximization. Using this thresh-
old the proposed approach achieved 93.6% of sensitivity
and 55.7% of false positive rate for 47 malign cancer cases
from a population of 117 breast disease patients.

Arora et al. [32] analysed 92 patients, of whom 58 have
some malignant tumour and 34 some benign tumour.
Each patient underwent three types of analysis, named by
the authors as (i) screening, (ii) clinical, and (iii) by
artificial neural network. In the first analysis the patients
were ranked according the risk of breast cancer from zero
(without risk) to seven (very high risk). In the clinical
analysis the authors used mammography and ultrasound
images to verify the assessment as positive or negative for
pathology. The neural network-based analysis applied an
artificial intelligence technique to identify the presence of
a malignant tumour in the breast.

Wiecek et al. [76] classify the thermal images as ‘‘with
tumour’’ or ‘‘without tumour’’. Their approach was eval-
uated using 30 images of healthy patients and 10 images
of patients with malignant tumour. For each patient
breast four thermograms were acquired with frontal and
lateral views. The authors claim that they use an ANN to
analyse the extracted features. However, they report
results only for the average of the temperatures.
In Schaefer et al. [72,77], the authors use a genetic
algorithm to reduce to about 100 rules the original set of
2,812 rules of a neuro fuzzy system to classify breast
thermal images. This reduced system is more time-
efficient than the original one and it presented an accep-
table classification accuracy result of 80.8%.

Delgado and Luna [39] used a preliminary diagnosis
established according to thermo biological criteria (TH)
proposed by Hobbins [92]: TH1—normal uniform non-
vascular; TH2—normal uniform vascular; TH3—dubious;
TH4—abnormal; or TH5—severely abnormal.

Boquete et al. [93] describe a method for automatic
detection of the region with high risk of occurrence of a
tumour finding in thermal images. They transform the
pseudo-colour thermal breast image from RGB to the
YCrCb colour space and apply the ICA dimensionality
reduction method on each channel. In turn, the three
ICA images are converted into binary images using Otsu’s
threshold [71] and a post-processing is applied to com-
bine the outcomes and discriminate the tumour areas.

In Serrano et al. [60] the proposed feature vectors were
processed by a machine learning software called WEKA
[94], and as a result the given IR images are classified into
‘‘healthy’’ or ‘‘unhealthy‘‘. The ROC curve analysis shows
that Naı̈ve Bayes and Naı̈ve Bayes Updateable present the
best area under ROC curve of 0.958 using the standard
deviation for right and left breasts.

Acharya et al. [44] train a support vector machine
(SVM) [95] classifier. They apply cross-validation to dis-
criminate between normal and malignant breast condi-
tions. Their system produces an accuracy of 88.1%,
sensitivity of 85.71% and specificity of 90.48%.

Resmini [53] uses a PCA technique to reduce dimen-
sion of sample, and sixteen features were chosen as the
most significant ones. Classification was made by SVM
implementation present on WEKA software. Results
achieved show that features based on geo-statistic mea-
sures were particularly important to classify diagnosis.
The methodology achieved 82.14% of accuracy, 91.7% of
sensibility and 25% of specificity.

Zadeh et al. [74] apply two algorithms of clustering,
namely k-means and c-means, for performing the classifi-
cation of the patients as cancerous or non-cancerous. The
authors do not show their results in terms of specificity,
sensitivity or accuracy.

In Borchartt et al. [64] a LibSVM classifier [96] with the
leave-one-out technique was used in the classification
procedure. The two classification approaches described
differ by extracting features from the entire ROI (first
approach), and from the quadrants of the ROI (second
approach). Results show that the first approach is more
suitable for the used features, where the authors achieved
85.71% of accuracy, 95.83% of sensibility and 25% of
specificity. The second approach presented 60.7% of
accuracy, 66.7% of sensitivity and 25% of specificity. The
main drawback of these approaches is low specificity.
The authors claim that this could be related to the
unbalance of the samples used in computation. Borchartt
et al. [54] use a machine learning techniques available
in WEKA and LibSVM software to classify the patient
in ‘‘unhealthy’’ or ‘‘healthy’’. The proposed approach can
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correctly classify the images up to 95% of the cases by
using the Naı̈ve Bayes classifiers and the standard devia-
tion of a subtracted image of the patient breasts using the
Hurst coefficient computed assuming different
window sizes.

7. Image interpretation for diagnosis assistance

Computer Aided Diagnosis (CAD) systems for medical
imaging provides complementary tools to help doctors
on the interpretation of exams. Like in other scientific
disciplines, the availability of better computer systems
and more advanced classification algorithms has made
possible a significant advance in the accuracy of CAD
systems for medical applications in last decades. In
particular, for the case of breast thermal images, the need
of automatic thermographic interpreters was pointed out
since the late 1970s [97].

To improve the performance of CAD systems for breast
cancer image-based diagnosis, it is necessary to reduce
the semantic gap between the high-level medical con-
cepts (which are described linguistically) and the low-
level information present in computer images (i.e., the
image pixels). An intermediate semantic level can be
provided by the use of medical ontologies. This field of
Artificial Intelligence aims to produce formal representa-
tions of a set of concepts within a domain and to formally
define the relationships between these concepts [98].
Ontology languages are used to encode the ontologies.
Several attempts have been produced to apply ontology
principles to breast histopathology image analysis [99]
and also to mammography images [56]. Such mammo-
graphic ontology is based on the BIRADS [100] and
allows to formally describe some types of abnormalities
to define the properties (or features) and relations among
these abnormalities. Tutac et al. [99] use Ontology Web
Language standards [101] to translate the information
contained in histological images to pathologist’s domain
for improving breast cancer grading results. However,
there is still a lack of extending the application of medical
ontologies to breast thermal images.

Negin et al. [97] implemented a basic software tool
whose results demonstrated that the automatic inter-
preter outperformed from 4 to 7% the classification results
produced by a human interpreter with respect to both
thermographic impression and biopsy, considering the
same test images.

More recently, different software tools have been
proposed for breast thermal image processing. Arora
et al. [32] perform a two-year study on New York
Presbyterian Hospital-Cornell with 92 women for whom
a breast biopsy had been recommended on the basis of a
previously suspicious mammogram or ultrasound. The
study assess the effectiveness of a digital infrared thermal
image (DITI) system, the Sentinel BreastScan (Infrared
Sciences Corp.) in detecting breast pathology in a group of
patients with suspicious findings on either mammogra-
phy or ultrasound that all underwent biopsy in a pro-
spective, double-blinded trial. Ninety-four biopsies were
analysed (60 malignant, and 34 benign) in women with
ages ranging from 23 to 85. Their system considers 3
approaches to evaluation: (i) an overall risk score in the
screening mode; (ii) a clinical score based on patient
information; and (iii) an assessment by artificial neural
network. Their report as result of 97% sensitivity, 44%
specificity, and 82% negative predictive value depending
on the mode used.

Wiecek et al. [76] described a tool developed in
MATLAB that implements thermal signature calculations
to detect pathological cases using first and second order
statistical parameters computed from 2D wavelet trans-
form of the image.

Umadevi et al. [102] developed the software called
ITBIC for breast thermal image interpretation. Their sys-
tem captures three thermal images for each female sub-
ject screened (i.e., frontal, left and right views) and then
extracts highest temperature area of the thermograms
and creates a simplified image for its interpretation. The
authors reported the following results provided by the
IBTIC interpreter on 50 female breast thermal images:
positive predictive value of 80%, negative predictive value
of 95.6%, sensitivity of 66.7%, and specificity of 97.7%.

Wishart et al. [6] present a novel artificial intelligence
programme called NoTouch BreastScan and compare their
results with Arora et al. [32]. When Wishart et al. [6]
repeat the experience of Arora et al. [32] using the
Sentinel BreastScan, their results show a low sensitivity
in both screening mode (53%) and neural network (48%)
which does not concur with previously published data by
Arora et al. [32]. The results achieved by NoTouch
BreastScan are sensibility of 48% and specificity of 70%.

Moghbel and Mashohor [103] present a survey on CAD
systems using thermography. They compare different
approaches based on neural networks and fuzzy systems
that have been implemented in different CAD designs.
According to the authors, the greatest improvement in
CAD systems was achieved with a combination of fuzzy
logic and artificial neural networks in the FALCON-AART
and complementary learning fuzzy neural network
(CLFNN). With a CAD design based on FALCON-AART, it
was possible to achieve an overall accuracy of near 90%.
This confirms that CAD systems are indeed a valuable
addition to the efforts for the diagnosis of breast cancer.
The lower cost and high performance of new infrared
systems combined with accurate CAD designs can pro-
mote the use of thermography in many breast cancer
centres worldwide.

8. Computer modelling

Some complementary analysis can be performed using
IR images, papers that discuss these are commented in
this section. Thermal image is a two-dimensional (2D)
map of temperature on three-dimensional (3D) positions
of the breast surface. The main goal of any numerical
simulation is to quantify the complex relationships
between the breast thermal behaviours and the under-
lying physiological conditions. Numerical modelling of
the heat transfer in a woman breast may reveals condi-
tions under which tumours and others diseases can be
detected by thermograms. It could consider the sensitivity
of each parameter involved in this process. The breast
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geometry representation is important in the attempt to
find possible factors related to a valid of overall breast
pathological diagnosis. In conjunction with IR images that
representation can be used also to estimate some thermal
physical properties of the breast. These are the aims of
many works in breast geometric modelling. However, few
works are dedicated to represent real geometries of
patients on the representation of the breast in order to
model and consequently to analyse a 3D tumorous breast.

Zhang, et al. [104] apply finite element analysis to
study the effects of geometrical parameters of the tumour
(such the location and size) in the thermal diagnosis
conditions. To simplify the theoretical analysis, the breast
is seen as a semi-sphere and the tumour is considered
a sphere positioned in spherical coordinates. Their
numerical results show that it is difficult to identify the
tumour by using surface temperature expression when
the tumour is more than 3 cm below the skin surface. The
effect of the environmental temperature on the surface
temperature expression is significant, but that of the
surface convective heat transfer is not significant accord-
ing their experiments. Various values of emissivity
ranging from 0.9 to 1.0 are considered. Their results show
that the distance between the surface and the tumour
plays an important role to the surface temperature
expression. Moreover, during the thermal diagnosis, the
decrease of environmental temperature will promote the
visibility, but the increase of surface convective heat
transfer is not helpful.

Lin et al. [105] present a 3D finite element breast
model to investigate the relationship between an
embedded tumour and surface temperature distribution.
They present techniques to enhance the thermal signature
of breast tumour that, as they stated, allow finding it
(even in case of small tumour in deep regions). In their
model, the breast is assumed to be hemispherical in shape
and consist of four layers: skin, subcutaneous fat, gland-
ular tissue and muscle core. It is completely regular and
the areola is in the middle area of the skin layer. They use
the Pennes bio-heat equation to calculate the influence of
the body heat in the skin surface [28]. As modelled by the
authors, the tumour is spherical and continuous grown is
considered.

Jiang et al. [106] presents an inverse-problem model-
ing technique that considers and estimates the thermal
profile of breast thermograms. The first modeling method
is the Forward Thermography, which is based on the
statistic Pennes equation [28], as well. The authors used
the tetrahedron finite element (FE) meshing, to obtain the
equation

KT¼ P ð1Þ

where T is the unknown temperature vector, K is the
thermal characteristic matrix of breast, and the vector P
represents thermal loads. Finite-element model was
applied in the quoted mesh in order to obtain the
geometry of the breast. The second modeling method is
the Inverse Thermography that objectifies the estimation
of thermal properties in K and in P from T. But Eq. (1) has
underdetermined nature, so spatial constraints were
added to previous thermal properties, and the inverse
thermal finite element method modeling equation was
simplified.

Jiang et al. [107] present a 3D finite element method
(FEM) based on thermal and elastic modeling techniques to
improve the thermography potential as a reliable breast
cancer detector. The method focuses on thermal and on
elastic properties of both normal and tumorous breasts
tissues. It considers that the presence of cancer provides
temperature alteration and metabolic changes in the breast
tissue. The method was applied to obtain the breast tissue
geometry from a simple hemispherical model composed of
four concentric tissue layers. Then, the generated model has
gone through a progressive deformation due to application
of the elastic model. Thermal equilibrium equation was
used with FEM (under influence of steady-state Pennes
equation) in order to ascertain temperature distribution of
the breast. Galerkin approach [108] is used to derivate
FE equations, enabling this equation being expressed as a
thermal FE equation and establishing the static thermal FE
modeling. A recursive finite difference method (FDM) was
used in the discretization in the time domain for the
dynamic thermal modeling, which is related to the heat
conduction, blood perfusion and metabolic generation.
Linear elastic FE modeling was obtained by the use of an
elastic FEM technique in purpose of approximating the
gravity-induced deformation in the breasts tissues. It was
observed that breast tissue elastic properties have non-
linear behavior in case of huge deformations. So, the model
proposed by Wellman [109] was chosen for the implemen-
tation of nonlinear elastic modeling. Furthermore, based on
Azar et al. [110], it was developed an iterative pseudo-
nonlinear scheme in order to obtain nonlinear elastic
deformations of the breast by a series of step-wise linear
approximations. In order to assess the correlation between
the temperature distribution in the breast and the gravity-
induced breast deformation under the influence of elastic
properties, the static and dynamic thermal FE modeling
methods were combined with the elastic FEM.

Santos et al. [111] conduct numerical simulations for a
breast that presents a tumour, considering different
tumour sizes and varying the tumour position inside the
breast. A parametric analysis is performed and the results
showed that the superficial temperatures became smaller
as the tumour radius diminishes. This fact is an indicator
that the detection of small tumours is difficult. Simula-
tions with different tumour sizes located at different
depths from the surface are performed as well. The results
state that the superficial temperature of the breast pre-
sents an alteration in its value as the tumour size varies.
From these, the authors concluded that both the tumour
depth and its size are important sensitivity parameter on
the temperatures profiles. Moreover, the results pointed
out that the tumour depth is inversely proportional to the
increase in temperature at the surface.

Silva [112] represents the real breast shape from 3
infrared images of a patient. From a database of 2D thermal
images, curves are extracted and combined to generate a
3D model of the patient. This model has several important
applications such as mesh generation for use in numerical
methods for analysis and visualization. Such technique
could be used in breast reconstruction or for definition of
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the best prosthesis for the patient and to aid the diagnosis.
A frontal IR image and two lateral ones are used to detect
the body limit points in order to guide the geometric
reconstruction of the shape. The obtained 3-dimensional
geometrical mesh is verified by comparing it with photo-
graphic and 3D laser scan images.

Modelling the 3D geometry and the use of IR images for
the reconstruction of the breast geometry were explored
by Viana et al. [46] and Lima et al. [113]. First of all, an
algorithm detects the contour of the body using threshold,
and keeps these points in separated lists of coordinates.
Limiting curves defining the breast contour to be modelled
are obtained from frontal and lateral IR views. Curves are
fitted using the least-square method. Some external pros-
theses were measured by a Coordinate Measuring Machine
and the method allows choose among them, the one that
best fit the patient original breast, on terms of size. The
coordinates of the chosen prosthesis are used to tessellate
a geometric mesh for numerical modelling in heat transfer
analysis. The commercial software Fluent [114] was used
to perform calculations of the temperature profiles. The
following boundary conditions are considered: the heat
exchange by convection among: the surface of the breast,
the external environment (at 27.5 1C) and the breast
(around 37 1C). The coefficient of convective heat transfer
of 13.5 W/m2C was adopted. Finally, the maximum tem-
peratures obtained in the calculations are compared with
that from the IR images of three patients with different
pathologies. All of them have the clinical diagnosis and the
most complete set of examinations using the right location
of the nodule.

Amri et al. [37] studied the feasibility and limitations
of the use of a transmission line matrix (TLM) on model-
ling and analysing a 3D tumorous breast. The TLM is a
numerical technique for electromagnetics, mass and heat
transfer. The authors also present a review of some
previous works since the late 1970s. In that paper, the
modelling of the bioheat equation is done with the help of
Pennes equation [28,29]. The authors created a 3D regular
breast model with a thermography device, consisting of
multi-array IR sensors interfaced and a computer. The
model of breast tumour is assumed to be spherical with
many different diameters and depths. Their results
pointed to importance of some thermography properties,
like the influence of perfusion rate and heat transfer of a
tissue in the steady-state temperature at the surface of
this tissue.

Umadevi et al. [115] perform an experiment to esti-
mate tumour parameters such as size and depth. They
developed a framework called Infrared Thermography
Based Image Construction (ITBIC) to estimate the tumour
contour from the breast skin surface temperature. This
framework first estimates the actual size and location of
the tumour and, in turn, calculates depth using the
Markov Chain Monte Carlo method. The authors validate
the proposed method using two models: watermelon (a
bulb is put on a phantom) and Agar (Agar powder was
boiled in water around 30 min and poured into a plastic
jar which contained electric bulb).

Grubisic et al. [116] present a 3D thermography
system which is comprised by a 3D scanner and a thermal
camera, leading to a more accurate and more representa-
tive representation of the modelled body. Their three-
dimensional thermographic visualization can provide a
better understanding of the body in analysis and diag-
nosis. The workflow has three steps: (i) calibration; (ii)
acquisition; and (iii) medical applications, which leads to
the construction of the three-dimensional thermogram.
These components are controlled and synchronized by
software running in a conventional PC. The 3D scanner is
build using a video projector that emits structured light
patterns on the object to be scanned, whilst the camera
captures grey scale images of the projections generated by
the emitted light. Thermal camera captures the thermal
distribution on the surface of the object, generating
thermograms that can be used for different purposes.
The entire process encompasses the calibration of both 3D
scanner and thermal camera. With this calibration pro-
cess, the system is adjusted to start the acquisition
process. Then, the 2D thermograms are associated with
the 3D data generated by the scanner. The obtained
results are 3D standardized thermograms representing
the temperature distribution of the object (as a human
breast). The results are shown on a special 3D visualiza-
tion display. The evaluation methods are specified by the
purpose of the analysis of the 3D thermogram. In their
paper, the authors focused on the medical applications for
the thermograms, especially regarding that the tempera-
ture distribution is intrinsically connected to biological or
physiological processes related to some disease. In con-
clusion, there are three main kinds of medical applica-
tions: scientific modelling, scientific data analysis and
scientific data visualization. Unfortunately, the authors
do not provide details about the computing of the 3D
mesh. A drawback of the proposed approach is the need to
make each patient undergo a 3D scanning.

9. Conclusions

The thermography is non-invasive, radiation-free and
complementary to anatomical investigations based on
X-rays, ultrasound and three-dimensional scanning tech-
niques such as CT and MRI [31,117]. Some works have
been described in surveys as Kennedy et al. [118] and Sree
et al. [119], where articles about breast thermal images
are analysed and compared with other types of screening
examination (clinical breast exam, mammogram, ultra-
sound, etc.). Currently the unique examination that pro-
vides 100% sure of the presence of a tumour is the biopsy.
However, since the late seventies works show that ther-
mography can aid on diagnosis especially when combined
with other types of breast examination. The Ville Marie
studies cited by Kennedy et al. [118] showed that thermo-
graphy had a sensitivity of only 83% in detecting breast
cancer, while the combination of mammography and
thermography had a sensitivity of 95%. Although the
review of all these works point credibility to the thermo-
graphy, the IR imaging cannot be considered as a sub-
stitute for any other examination. However, it should be
considered a complementary modality of breast disease
detection. IR imaging can improve the sensitivity of breast
cancer detection by capturing abnormalities in early and



T.B. Borchartt et al. / Signal Processing 93 (2013) 2785–28032800
even in non-palpable stages [3]. IR is also important
because it is a practical and safe modality of imaging.
Especially when combined with other types of examina-
tions it may increase the possibilities of screening and
could be a powerful tool for breast cancer detection.
Therefore, research works on this subject are important in
order to develop the ideal way to use this kind of resource.
This development may include the definition of protocols of
patient’s image acquisition, training of the involved specia-
lists, development of specialized CAD systems, and deploy-
ment of public image databases. The future of computer
vision tools for breast cancer detection relies on the ability
to qualify and to quantify changes in the metabolic beha-
viour of a patient by using pattern recognition techniques.
Moreover, we can focus on the important fact that a unique
type of image modality does not have power to detect all
kinds of diseases, and consequently, any modality is not
totally reliable in a broad range of infirmity. Certainly, in
order to achieve the best diagnosis, to be able to detect
the most diverse diseases, data from all related kinds of
examinations should be integrated.

The aim of screening for any disease is to reduce
mortality (and morbidity) from this disease by performing
a test on an asymptomatic population, to detect disease at
an earlier stage. For such purpose, IR images are very
adequate. However, they are much more effectively used
in combination with some other systems helping on the
diagnosis and allowing it to be performed also by trained
nurses or infrared thermography practitioners [5]. Criteria
for assessing the validity of screening programs include
that the screening test must be reliable, valid, and
repeatable; must be acceptable, safe and easy to be
performed; have a high positive predictive value; and be
sensitive and specific. Furthermore, the screening pro-
gram’s cost should be evaluated with the benefits of early
detection, and there should be an available effective
treatment for managing the abnormality identified by
the screening test. These criteria highlight necessary out-
comes for studies of the effectiveness of infrared thermo-
graphy in the domain of breast cancer screening and have
suggested that thermograms should not be used alone as
a method of screening, or as a replacement for mammo-
graphy, but rather it should be used and evaluated as
a complementary screening and detection procedure
adjunctive to physical examination and mammography
[42,120,121]. It is very high false positive rates potentially
may present psychological costs (i.e., anxiety and confu-
sion) that may be caused by receiving conflicting screen-
ing test results were also considered as relevant factors
for adjunctive testing in breast cancer screening. The
International Academy of Clinical Thermology [122] pro-
poses that thermography can act as an ‘‘early warning’’
system by identifying signs of possible cancer or pre-
cancerous cell growth that would not be detectable by
other screening methods for up to ten years. In screening
programme this could be of great advantage. Evaluating
the use of thermography in a cancer detection program, or
as being part of a multimodal-screening programme, was
not within the scope of this review [42].

A significant finding of the reviews conducted on this
work is that there is no universally accepted systematic
approach for acquisition and publication of results on
infrared imaging. Most of the published studies on ther-
mography refer to images that are no longer available.
We believe that the major gaps in knowledge at this time
can only be addressed by large-scale and systematic
acquisition. Therefore, one major flaw identified by this
survey is that there is no a protocol or a standardization
to support the clinical effectiveness and benefits that
may occur from the complementary diagnostic use of
thermography in clinical decision-making. An equally
important finding is that there is no papers that examined
all aspects involved in the use of IR as a possible issue on
pattern recognition systems or computer vision for diag-
nostic setting.
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Belo Horizonte, MG, Brazil, vol. 1, pp. 1610–1619. Available in:
/http://www.visual.ic.uff.br/proengS, accessed: 27 January 2012.

[48] J. Koay, C. Herry, M. Frize, Analysis of breast thermography with
an artificial neural network, Engineering in Medicine and Biology
Society—IEMBS 1 (1) (2004) 1159–1162.

[49] X. Tang, H. Ding, Y. Yuan, Q. Wang, Morphological measurement of
localized temperature increase amplitudes in breast infrared
thermograms and its clinical application, Biomedical Signal
Processing and Control 3 (1) (2008) 312–318.

[50] Z.Q. Liu and C. Wang, Inventors, Method and Apparatus for Thermal
Radiation Imaging, United States Patent, US006023637A, 8 February
2000.

[51] O.D. Nurhayati, A. Susanto, T.S. Widodo, M. Tjokronagoro, Principal
component analysis combined with first order statistical method
for breast thermal images classification, International Journal of
Computer Science and Technology 2 (2) (2011) 12–18.

[52] Meditherm, (2012) The Meditherm med200, Available at: /http://
www.meditherm.com/mms_default.htmS, accessed in: 31 January
2012.

[53] R. Resmini, Análise de Imagens Térmicas da Mama usando
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Automated detection of breast cancer in thermal infrared images,
based on independent component analysis, Journal of Medical
Systems (2010) 1–9.

[94] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
I.H. Witten, The WEKA data mining software: an update, SIGKDD
Explorations 11 (1) (2009) 10–18.

[95] R.E. Fan, P.E. Chen, C.J. Lin, Working set selection using the second
order information for training SVM, Journal of Machine Learning
Research 6 (2005) 1889–1918.

[96] C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines,
ACM Transactions on Intelligent Systems and Technology 2 (3)
(2001) 27.1–27.27.

[97] M. Negin, M.C. Ziskin, C. Piner, M.S. Lapayowker, A computerized
breast thermographic interpreter, IEEE Transactions on Biomedi-
cal Engineering 24 (4) (1977) 347–352.

[98] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach,
third ed. Prentice-Hall, 2010.

[99] A.E. Tutac, D. Racoceanu, T. Putti, X. Wei, L. Wee-Kheng, V. Cretu,
Knowledge-guided semantic indexing of breast cancer histo-
pathology images,, Proceedings of IEEE Internationnal Conference
on Biomedical Engineering and Informatics (2008) 107–112.

[100] American College of Radiology (ACR) (2003) Breast Imaging
Reporting and Data System Atlas (BI-RADS Atlas). Reston, VA:
American College of Radiology.

http://yellotec.com/pdf/S45_Datasheet.pdf
http://www.villemariemed.com
http://www.villemariemed.com
http://150.161.110.168/termo


T.B. Borchartt et al. / Signal Processing 93 (2013) 2785–2803 2803
[101] D.L. McGuiness and F. van Harmelen, (2004) OWL Web Ontology
Language W3C Overview, available at: /http://www.w3.org/TR/
owl-features/S, accessed in: 13 January 2012.

[102] V. Umadevi, S.V. Raghavan and S. Jaipurka, (2010) Interpreter for
breast thermogram characterization, IEEE EMBS Conference on
Biomedical Engineering & Sciences (IECBES 2010), Kuala Lumpur,
Malaysia, pp. 150–154.

[103] M. Moghbel, S. Mashohor, A review of computer assisted detec-
tion/diagnosis (CAD) in breast thermography for breast cancer
detection, Artificial Intelligence Review (2011) 1–9.

[104] H. Zhang, L. He and L. Zhu, (2009) Critical Conditions for the
thermal diagnosis of the breast cancer, 3rd International Confer-
ence on Bioinformatics and Biomedical Engineering, China, pp. 1–3.

[105] Q.Y. Lin, H.Q. Yang, S.S. Xie, Y.H. Wang, Z. Ye, S.Q. Chen, Detecting
early breast tumour by finite element thermal analysis, Journal of
Medical Engineering and Technology 33 (4) (2009) 274–280.

[106] L. Jiang, W. Zhan and M.H. Loew, (2010a) Modeling thermography
of the tumorous human breast: from forward problem to inverse
problem solving, 8th International Symposium on Biomedical
Imaging, pp. 205–208.

[107] L. Jiang, W. Zhan, M.H. Loew, Modeling static and dynamic
thermography of the human breast under elastic deformation,
Physics in Medicine and Biology 56 (2010) 187–202.

[108] A. Ern, J.L. Guermond, Theory and Practice of Finite Elements,
Springer, 2004.

[109] P.S. Wellman, Tactile Imaging, Harvard University, Cambridge,
MA, 1999.

[110] F.S. Azar, D.N. Metaxas, M.D. Schnall, A deformation finite element
model of the breast for predicting mechanical deformations under
external perturbations, Academic Radiology 8 (1) (2001) 965–975.

[111] L.C. Santos, R.C.F. Lima, L. Bezerra, P. Lyra and A. Conci, (2010)
Parametric analysis on the influences of tumour position and size
in breast temperature profile, Proceedings of 17th International
Conference on Systems, Signals and Image Processing, Rio de
Janeiro, RJ, Brazil, pp. 478–481.
[112] S.V. Silva, (2010) Reconstruc- ~ao da Geometria da Mama a partir de
images termograficas, D. Sc. Thesis, UFF (in português).

[113] R.C.F. Lima, L.C. Coelho, M.J. Viana, S.V. Silva, M.C. Araújo,
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